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Abstract-Uniqueness is established for positive solutions of a nonlinear integral equation which governs
the effective stress in internally loaded spherical and incompressible cylindrical pressure vessels subject to
primary or secondary transient creep.

INTRODUCTION

It was shown in [1,2] that the boundary value problems for transient quasistatic creep in hollow
spherical and infinite incompressible cylindrical pressure vessels subject to a radial
nondecreasing internal pressure can be reduced to an integral equation of the form

(1)

Here, the unknown function a stands for the effective stress, and P(t) is proportional to the
prescribed internal pressure. The independent variables rand t denote, respectively, radial
distance from the center of the vessel and time, a and b are the internal and external radii of
the vessel, and

(2)

where j =2 for cylinders, j =3 for spheres.
The quantities nand m are creep constants arising from the well-known [3] primary creep

law

(c) _ 3K f' U."-I
Ejj - T Jo [E.(c)]m Sjj doT (3)

relating the creep strains E~C) to the effective creep straint E.(C), the effective stress u., and the
deviatoric stress components Sij. Notice that, for m = 0, (3) reduces to the law for secondary
creep, and the structure of (1) is greatly simplified. The constant JL depends on both elastic and
creep constants and is proportional to K1/(m+\). Thus, in the absence of creep (K =0), JL =0 and
eqn (1) collapses to the solution of the elastic problem.

For the present analysis and in order to be able to use the results of [I] and [2] on
boundedness of solutions of (1), we must assume that

(4)

(5)
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and that P is integrable on [0,00]. Also, for m > 0, it is assumed that

IT(r,t»O (a$r$b, t>O). (6)

In the case m = 0, (6) can be shown to be a consequence of (4) and (5).
With the above assumptions, it was shown in [2] for secondary creep and in [1] for primary

creep that any positive solution IT of (I) has the following bounds:

(7)

It is the purpose of this note to show that there is only one such solution. The main idea of
the proof is a uniqueness argument based on the Gronwall-type inequality of Lemma 2 below.
This line of attack was suggested by the work of Lewis Wheeler in [4] on the uniqueness of
solutions to the displacement problem of nonlinear dynamic elasticity.

UNIQUENESS THEOREM

We shall need the following two elementary lemmas.

LEMMA I. For X., X2, and m positive,

(8)

A simple proof of this inequality can be obtained by using a finite Taylor expansion of the
function f(x) == X1/1m

+1) about the smaller of XI and X2 and the fact that f" < 0 on (0,00).

Lemma 2. (Gronwall). Let u(t) be continuous on [0, T] and suppose that, for some finite

constants C > 0 and 0 $ a < I,

Then
u(t)=O (O$t$T).

This lemma is proved by using an integrating factor to put (9) in the form

(9)

(10)

Theorem. The integral eqn (I) has at most one continuous, positive solution IT on

[a, b] x [0,00).
Proof. Suppose that ITI and IT2 are both positive solutions of (I) and define

(II)

Then, it suffices to show that

on any interval [0, T], T > O.
It follows from (I) and (11) that

{3 (b([i' JI/1m+1) [i' ]l/lm+l))d~
u(r, t) =~ Ja 0 ITl"(~' T) dT -. 0 IT2"(~, T) dT T

([i' Jll<m+ll [it J!/(m+ll)
-IL 0 ITI"(r,T)dT - 0 IT2"(r,T)dT .

(12)

(13)



On uniqueness of solutions for nonlinear creep problems 601

If this equation is now multiplied by r- I and integrated from a to b, it will follow, using (2), that

L
I> dr
u(r,/)-=O (0$1<00).

a r
(14)

Because of (14), if we multiply both sides of (13) by' ri- I u and integrate from a to b, we shall
obtain

(15)

Notice that, by virtue of (5) and (7),

(16)

Therefore, we can use (16) and Lemma I, taking

Xi =f u;"(r, 1') d'T (i =1,2),

to derive from (15) the inequality

(17)

Due to (7) and the continuity of P, it is clear that there exists a finite constant M =M(T)
such that

In fact, M can even be chosen independent of T if P is bounded. Therefore, if we set

(18)

= p,M (~p(o»)-m"'(m+l)

e m+l bi '

it will follow from (17) and (18) that

m
a= m+

(19)

Therefore, by Schwarz's inequality,

[f.
1> ]1/2 f' [f.1> ]1/1.u2(t) $ er" a ri- 1u2(r, I) dr Jo a ri- 1u2(r, 1') dr d'T

$ er"u(/)f U('T) d'T.

This result, together with Lemma 2, completes the proof.

(20)
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